Deficiency of dystrophin-associated proteins in Duchenne muscular dystrophy patients lacking COOH-terminal domains of dystrophin.
نویسندگان
چکیده
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is a cytoskeletal protein tightly associated with a large oligomeric complex of sarcolemmal glycoproteins including dystroglycan, which provides a linkage to the extracellular matrix component, laminin. In DMD, the absence of dystrophin leads to a drastic reduction in all of the dystrophin-associated proteins, causing the disruption of the linkage between the subsarcolemmal cytoskeleton and the extracellular matrix which, in turn, may render muscle cells susceptible to necrosis. The COOH-terminal domains (cysteine-rich and carboxyl-terminal) of dystrophin have been suggested to interact with the sarcolemmal glycoprotein complex. However, truncated dystrophin lacking these domains was reported to be localized to the sarcolemma in four DMD patients recently. Here we report that all of the dystrophin-associated proteins are drastically reduced in the sarcolemma of three DMD patients in whom dystrophin lacking the COOH-terminal domains was properly localized to the sarcolemma. Our results indicate that the COOH-terminal domains of dystrophin are required for the proper interaction of dystrophin with the dystrophin-associated proteins and also support our hypothesis that the loss of the dystrophin-associated proteins in the sarcolemma leads to severe muscular dystrophy even when truncated dystrophin is present in the subsarcolemmal cytoskeleton.
منابع مشابه
P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملDetection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملA severe muscular dystrophy patient with an internally deleted very short (110 kD) dystrophin: presence of the binding site for dystrophin-associated glycoprotein (DAG) may not be enough for physiological function of dystrophin.
We report a 4-yr and 5-month-old boy with severe clinical features of an early-onset Duchenne muscular dystrophy, who had a very short (110 kDa) dystrophin at the sarcolemma. The patient had a large deletion (exons 2-44) of the dystrophin gene which was predicted to cause a reading frame shift. Sequence analysis of dystrophin mRNA in muscle revealed an alternatively spliced gene product from ex...
متن کاملSkeletal and Cardiac Myopathies in Mice Lacking Utrophin and Dystrophin: A Model for Duchenne Muscular Dystrophy
Dystrophin is a cytoskeletal protein of muscle fibers; its loss in humans leads to Duchenne muscular dystrophy, an inevitably fatal wasting of skeletal and cardiac muscle. mdx mice also lack dystrophin, but are only mildly dystrophic. Utrophin, a homolog of dystrophin, is confined to the postsynaptic membrane at skeletal neuromuscular junctions and has been implicated in synaptic development. H...
متن کاملThe Crystal Structures of Dystrophin and Utrophin Spectrin Repeats: Implications for Domain Boundaries
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 92 2 شماره
صفحات -
تاریخ انتشار 1993